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Abstract. A new iteration procedure for solution of the Schrodinger equation with arbitrary 
local potential is proposed. Both the eigenvalues and eigenfunctions are represented in the 
form of a series which is well convergent under certain conditions. The solution of the 
k-dimensional Schrodinger equation within the proposed scheme reduces to a problem of 
the k-dimensional electrostatics. As an example potentials x2" ( n  = 2, 3,4) and m 2 x 2 +  gx4 
in one-dimensional space are considered. 

1. Introduction 

The Schrodinger equation is the basis for solution of many physical problems. Various 
phenomena, both well known and discovered recently, are described by this equation 
with some potential. Sometimes it is necessary to consider very sophisticated poten- 
tials, and as a rule the eigenvalues and eigenfunctions cannot be found exactly. One has 
to turn to approximate methods. Two are commonly used: the variational method and 
the Rayleigh-Schriidinger (RS) perturbation theory (see e.g. Landau and Lifshitz 1963). 
Both methods have certain drawbacks. The former requires a separate investigation of 
the question about its accuracy. The latter as a rule yields a divergent series which is 
sensible only at small values of the coupling constant. It has nothing to say about the 
strong coupling regime. Moreover, often it is necessary to investigate the analytical 
structure of the solution. In this case both methods turn out to be ineffective. There 
also exists numerical integration with the help of computers. However, this is applic- 
able only to one-dimensional problems, and practically does not work in two or more 
dimensions. 

In this paper we construct a new iteration scheme for determination of the 
eigenvalues and eigenfunctions of the k-dimensional Schrodinger equation with arbi- 
trary local potential (§ 2). 

Unlike the standard treatment of RS perturbation theory (Landau and Lifshitz 
1963), our procedure does not require the knowledge of the whole spectrum of the 
unperturbed potential. The only information needed is that referring to the level of the 
unperturbed potential we are interested in. It gives us the possibility of choosing the 
unperturbed potential as we want. In particular, the emerging series can be made 
convergent. In these cases, the RS series will be convergent as well. Physical arguments 
demonstrating the convergence are presented. As an attempt at a more rigorous 
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consideration we formulate also a simple theorem which gives a sufficient condition for 
the convergence of the procedure (9  3). 

Besides practical usefulness the approach possesses a certain elegance. For 
example, constructing successive iterations reduces to the solution of k-dimensional 
electrostatics with varying (coordinate-dependent) dielectric permeability. In one- 
dimensional space the answer'is written out in closed form. 

The general consideration is supplemented by a few examples (§ 4). We deal with 
one-dimensional potentials, which are rather often encountered in various applications, 
namely x Z n  ( n  = 2 , 3 , 4 )  and the quartic anharmonic oscillator. The question of the 
relation between traditional perturbation theory and that described here is discussed in 
§ 5. In this section a remark on literature is given too. The subject of this paper is 
restricted to the case of the ground state and the cases of excited states if node positions 
are known precisely. In the general case of excited states our procedure is somewhat 
modified. This problem is considered elsewhere (Turbiner 1979b). 

2. Description of method 

Let us proceed to a systematic description of the method. We start with a 
certain transformation of the Schrodinger equation, which converts the standard linear 
equation 

A $ + ( E -  V)$=O (1) 
into a nonlinear one. Here V is a multiplicative operator. The nonlinearisation 
transformation we mean has the form 

y = -(V$)/$ = -V(ln &) (2) 

where A and V are ordinary k-dimensional Laplace and gradient operators. Using 
equations (1) and (2) it is a trivial matter to obtain a new nonlinear relation 

div y - y 2  = E - V (3) 

which is completely equivalent to the original Schrodinger equation provided that the 
additional condition 

y = V (scalar function) (4) 

is satisfied. 

a formal parameter such that the equation 
The potential V can always be decomposed into two pieces V = VO + A V I  where A is 

can be solved exactly. Then yo = -(V$o)/$o. We delay discussion of the question as to 
how to choose Vo in each particular case and will now develop a perturbation theory 
with respect to A. In a standard way write 

n =O 

m 

E =  C AnEn. 
n = O  
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Then the values of E, and the functions y, are determined by the linear equations 

div Yn - 2y0yn = E, - Qn (8) 
where each of the functions y, must satisfy equation (4). Here 

(9) 

Multiplying both the right- and left-hand sides of equation (8) by &, we obtain 

div(y,&) = (En - Q n ) + i -  (10) 

The latter relation is the usual k-dimensional electrostatics law, 4; and y, playing the 
role of the dielectric permeability and the field strength respectively. To specify it 
completely one needs a boundary condition. Invoking the definitions of q ! ~ ~  and y,, an 
obvious relation holds: 

IYn402I + 0 for 1x1 +CO, 

which can be treated as a boundary condition. This relation can immediately be 
converted into information about E,. Indeed, integrating both sides of equation (10) 
over the whole space and transforming the volume integral on the left-hand side into the 
surface integral (with the help of the Gauss theorem), we find 

This expression gives the value of the nth correction to the energy level of the 
unperturbed potential. It is worth noting that the first correction E1 coincides with that 
of conventional Rayleigh-Schrodinger perturbation theory (Landau and Lifshitz 
1963). To determine other corrections E,, it is necessary to solve the electrostatical 
problem (lo),  with various right-hand-side expressions, which is equivalent to solution 
of the general elliptical equation 

AQn - ~ ( Y o ~ Q , )  =En - Q n  (12) 

where y, = VQ, and E, is given by equation (11). This is not an eigenvalue problem, 
since E, is assumed to be known from lower-order iterations (see equation (1 1)). Thus, 
from the numerical point of view a computer integration of equation (12) is a much 
simpler problem than that of equation (1). Besides for some cases it may be solved 
exactly. It will be discussed elsewhere. 

3. Recipe of convergence 

The convergence of the procedure proposed: is a complicated and difficult question. 
We plan to return to its detailed discussion elsewhere. However, a remark which seems 
physically justified is in order here. It is almost obvious that if the perturbing term A VI 
is less singular than Vo and is small compared with Vo for 1x1 + 03, then the series ( 6 )  and 
(7) are convergent. A reason which lies behind divergencies in ordinary perturbation 
theory is the singular nature of the perturbation. Consider the analytic structure of, say, 

i We restrict ourselves in the following to consideration of rising potentials only. The results obtained below 
are valid also in the standard RS perturbation theory. 
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the ground level energy, E ,  as a function of the coupling constant A in the complex A 
plane. If AVl/ Vo+ 00 for 1x1 + 00, then changing the sign of A, A + - A ,  results in an 
instability, and, in particular, in E there emerges an imaginary part due to tunnellings. 
This signals the divergence of the A series in this case:. If the potential VI  were less 
singular than Vo, then no reasons would exist for the appearance of singularities. At  
least, such reasons are not on the surface. Thus, one can expect that in this situation all 
the quantities are non-singular in A in the whole complex plane, which automatically 
means that A series are factorially convergent. We did not manage to find a rigorous 
proof of this statement. However, in numerical examples which will be discussed below 
the convergence is extremely rapid. We think the following theorem must hold$. 

Theorem. If y1 is a bounded vector function, then the series (6)-(7) are convergent. 
Now let us discuss how to realise the idea concretely. The central point is an optimal 

choice of the zeroth-order approximation which must guarantee the most rapid 
convergence of the procedure. It is clear that any function from S2(rWk) series is in fact 
the wavefunction of some level of some potential. In other words, given any function +bo 
one can fit a potential 

vo=Eo+Wo/+bo 

in such a way that the given function cclo turns out to be just a bound level wavefunction 
in this potential. It is obviously expedient to take +bo in such a way that Vo would be 
close to the original potential V, and in particular, would contain all the singularities 
which are present in V. This is automatically achieved if one puts in +bo the information 
concerning the behaviour near potential singularities and asymptotics, and nodes of the 
genuine wavefunction (I. Such information is easily available in each particular case, at 
least in one-dimensional and radially symmetrical problems. 

Since Vo(x) almost follows V ( x )  by construction and reproduces all its singularities, 
their difference, V I  = V -  VO, is small compared with VO everywhere, and hence the 
perturbation theory in (V  - Vo) must be convergent. 

4. Examples 

Let us give a few examples. Consider the Schrodinger equation in one dimension§. 
Then equation (4) represents a well known Ricatti equation, and equation (8) can be 
solved exactly 11, 

where Qn are defined in equation (10) and the nth correction to the energy level En is 
given in equation (1 1). 

t In fact, the above reasoning is the well known ‘Dyson argument’. 
$ W e  know the proof of this theorem in a weaker form. It will be published elsewhere. The question of 
convergence is considered also by Reed and Simon (1978). 
0 The k-dimensional radially symmetric equation reduces to the one-dimensional one. All relations given 
below after trivial modifications can be used in the k-dimensional symmetric case. A more detailed discussion 
of the procedure as applied to one-dimensional problems can be found in Turbiner (1979a). 
1 1  In other words, the Green function of the Schrodinger equation for Vo at Eo may be found exactly. From 
the point of view of second-order ordinary differential equations this is obvious. 
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For the potentials V(x) = x~~ ( n  = 2,3,4)  and V(x) = m2x2 +gx4, which are often 
encountered in various applications, the zeroth-order wavefunction can be chosen in 
the following form: 

(1)  (x) = x  exp 
2 n + l  

We limit consideration to the zeroth and first levels. These wavefunctions (14a, b) 
satisfy the Schrodinger equation with the following potentials: 

Ground state (equation (14a)) 

vP' (x) = -(&n ~x la- '  -'2m&lx in+') + mzx2 + gx2n, 

~ k ' )  (x) = -[&n + 2)/xln-l - 2m&lx1~+'1+ m2x2+ gx2", 

E ~ O )  = m. (15a) 

E&') = 3m. (15b) 

First excited state (equation (14b)) 

4.1. Potential V(x) = xZn 

In this case in equations (14a, b), (15a, b), we put m = 1 and g = 1. Then Vl(x) = 
V(x)- Vo(x) = -x -i(nlx~"-'-21xln+') (for the ground state) and Vl(x) = V -  Vo = 
-x2+[(n +2)Ixln-.'-21xln+'] (for the first excitation), and just these expressions will 
be treated as perturbations. Substituting them as well as $bO'(x)= 
exp(-x2/2 - Ixl"+'/(n + l ) ]  and 4b"(x) = x exp[-x2/2 - / x l " + ' / ( n  + I.)] into equations 
(1 1) and (13), one find the first corrections to the energy levels. The results are given in 
table 1. It is worth emphasising the rapid convergence of our method: already the 
second correction contribution does not exceed a few per cent. 

4.2. Quartic anharmonic oscillator V(x) = m2x2+gx4 

Only the gro_und state will be considered. Substituting the perturbation Vl(x) = 
2Jg/xl -2mdglx13 as well as +bO'(x) =e~p(-mx~/2- . \ lgJx1~/3)  into equations (11) and 
(13), one finds the first corrections to the ground state energy. For example, the 
first-order correction has the form 

2 

00 3 -so (x - mx ) exp(-mx2 - $ 4 x 3 )  dx 
s: exp(-mx2-$dgx3) dx 

= 2 Jg 

(we recall that Eo = m).  A remark concerning the analytic structure of E1 in the 
complex g plane is in order here. In fact it reproduces well some of the main features of 
the behaviour of the genuine energy E,  and, unfortunately, fails to reproduce others. 
Namely, El has a cut (-CO, 01 and the g + CO asymptotic is -g1'3 as it should be. 
Moreover, the discontinuity across the cut as g + -0 is exponentially small; however, it 
does not coincide with the WKB expression (see e.g. Bender and Wu (1969), Simon 
(1970)), which is known to be correct at g + -0. This deviation from the WKB result is 
certainly a drawback of the method, but fortunately, it does not invalidate it as a whole. 
Really, if one could sum the emerging series, the WKB formula would be restored. We 
think the latter statement can be proved quite rigorously (at least for the example 
discussed). 
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Table 2 presents our resu!ts containing the first two iterations and numerical 
calculations (Hioe et a1 1978). The agreement is excellent in the whole range of g 
investigated. 

Table 2. Ground state energy level of anharmonic oscillator with quartic anharmonicity 
(two iterations). (E’ = E/2, g’= g/2, see equation (15a).) ELxaCt from Hioe et t i l  (1978). 

g‘ E’ E&t 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 
10 
50 
100 
500 
1000 

0.561 658 
0.604 862 
0.640 163 
0.670 641 
0.697 772 
0.722 399 
0.745 055 
0.766 125 
0.785 861 
0.804 468 
1.504 63 
2.497 34 
3.125 82 
5.296 75 
6.657 39 

0.559 146 
0.602 405 
0.637 992 
0.668 773 
0.696 176 
0.721 039 
0.743 904 
0.765 144 
0.785 032 
0.803 771 
1.504 97 
2.499 71 
3.131 38 
5.319 89 
6.694 22 

5. Conclusion 

It is worth noting that the new perturbative procedure proposed here is not only 
interesting by itself, but yields also information about certain sums encountered in the 
usual RS perturbation theory:. In fact, there exists an interrelation between our method 
and that of RS. In the latter the wavefunction is expanded in the following additive way: 

m 

where the nth correction +,, is determined by a sum over all intermediate states of the 
unperturbed potential. For example, for the ground state the first wavefunction 
correction has the form 

where the superscript ( n )  labels the number of the level. On the other hand, we have 
within the approach proposed the wavefunction expansion in the following multi- 
plicative way, 

where VLfn = yn.  For one dimension the correction +io’ may be obtained from equation 

t We remind the reader that in this paper we restrict ourselves to the case of the ground state and excited 
states with exactly known node positions. 
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(13). Then the following sum rule is obtained: 

Here the constant a is determined by requiring that the first-order perturbed wave- 
function is normalised to unity. In the general case, to make the interrelation explicit let 
us invoke the definition (2) and consider series ( 6 )  and (7) as formal ones. By comparing 
two alternative expressions for coefficients of various powers A “  in the I) and E 
expressions, many attractive sum rules can be found. These sum rules give the 
information about the spectrum of the unperturbed potential. 

To summarise, we have managed to construct an iterational scheme which does not 
require the knowledge of the entire spectrum of an unperturbed problem. In one- 
dimensional and spherically symmetric cases closed analytical expressions for cor- 
rections at all orders can be written out. For arbitrary multidimensional potentials, the 
original eigenvalue problem turns out to be equivalent to integration of the elec- 
trostatics equation (12). From the numerical point of view such an integration is much 
simpler than the solution of the eigenvalue problem. 

We conclude with a remark about literature. In the paper by Dolgov and Popov 
(1978) a convergent iterational scheme for the ground state of an anharmonic oscillator 
in one dimension was proposed. With some effort one can show that the technique of 
this paper is a particular case of the approach developed here in one dimension, when 
yo(x) = [ V(.X)]”’ and the unperturbed potential Vo(X) = V(x) - V’/2JV. Moreover, 
it is applicable directly to a narrow class of one-dimensional problems. The one- 
dimensional Schrodinger equation was considered also in a recent paper by Aharonov 
and Au (1979) which we learnt about after the completion of the present work. There is 
a certain overlap between the results of this paper and the part of our work which treats 
one-dimensional potentials. 
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Note added. After the submission of this paper I learned of some new papers and results 
concerning the issues considered. 

(i) One-dimensional case. Perturbation theory (PT) in quadratures, which does not 
require the knowledge of the whole spectrum (similar to that discussed here), has a long 
history. It was first proposed by Zel’dovich (1956) and Kirzhnitz (1958). After that it 
was repeatedly rediscovered by many authors (Polikanov 1967, Pekar 1971, Dolgov 
and Popov 1978, Aharonov and Au 1979, Turbiner 1979a). 

It is worth noting that Polikanov was the first to construct the PT series starting from 
the Ricatti equation. The possibility of building a convergent PT series by means of this 
method was mentioned by Dolgov and Popov (1978). The whole issue was elaborated 
in my recent paper (Turbiner 1979a). 
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(ii) Multidimensional case. Quite recently there appeared several papers which 
generalise the approach suggested. Some particular two-dimensional problems were 
considered; for example, in the paper by Dolgov and Turbiner (1980) the problem of 
the Stark effect in hydrogen in an arbitrary field was solved. Furthermore, in Turbiner 
(1979b) the approach was generalised to the case of excited states. The relation 
between the PT and the Ritz variational principle was also discussed (E,,,($o) = Eo + 
El) .  It was shown that the PT suggested here allows one to estimate the accuracy of 
variational calculations. As an example, we considered the same problems as in §§ 3.1 
and 3.2 above, and the two-dimensional non-symmetric anharmonic oscillator. The 
details, and in particular some exact solutions of equation (12), are given in a 
forthcoming publication (Sou. Phys.-JETP in press). 

(iii) In a quite recent paper by Au and Aharonov (1979) an analogous PT was 
proposed. However, the possibility of building a convergent perturbative series is not 
discussed in this paper. 

Note added in proof. The method proposed in this paper turned out to be extremely fruitful in the case of the 
ordinary weak-coupling perturbation theory (V,  is an exactly soluble potential and VI is a polynomial 
perturbation) (Turbiner A V 1981 Pisma v Zh. Eksp. Teor. Fiz. 33 181-5). In this case the construction of 
perturbation theory is a purely algebraic problem! 
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